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 AN ANALYSIS OF CAPTAIN COOK'S LONGITUDE 
 DETERMINATIONS AT NOOTKA,  APRIL 1778 
 
 Nicholas A. Doe 
 
Summary: 
 
The British naval officer Captain James Cook is justifiably famous for his contributions to the art 
of navigation in the 18th century.  However, the method that he helped develop to measure 
longitude, which was based on observations of the Moon, required a great deal of calculation in 
contrast to the chronometer method that was also being developed at the same time.  Although 
some attention has been given to the role of instrument errors in determining the accuracy of 
Cook's longitude determinations, the role of computational errors has been neglected.  The lunar 
distance method was so computationally-intensive that errors were inevitable.  This paper 
examines the results of a re-working of Cook's calculations which brings to light a number of 
interesting mistakes and mis-recordings of observational data and shows that, by modern 
standards, "paperwork" mistakes were quite common.  The paper also identifies and corrects the 
principal source of the error in Cook's determination of the longitude of Nootka. 
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 AN ANALYSIS OF CAPTAIN COOK'S LONGITUDE 

 DETERMINATIONS AT NOOTKA,  APRIL 1778 

 

 By Nicholas A. Doe 
 
 

The sheets were all read until no error could be found; therefore I hope very few have escaped; but 
it is highly probable there will be some among such a multiplicity of figures. 
 W.Bayly, Commissioners of Longitude's astronomer on Cook's third voyage. 
 
 ...that gentleman's (Bayly's) book is full of errors... 
 Lieutenant King, chief astronomer and later captain on Cook's third voyage. 
 
 ...W.W. has seen many bad reckonings, but few so bad as it (King's log) contains. 
 W.Wales, astronomer on Cook's second voyage. 
 
 
The aboriginal people of the west coast of Vancouver Island have known for at least 4000 
years where their village of Yuquot is.  But for Captain James Cook and his crew, who 
arrived there in April 1778, the location of King George's Sound, or Nootka as it became 
to be known, had to be determined by its latitude and longitude.  For the 18th-century 
British explorers, Nootka was thousands of kilometres from anywhere. 
 
Living now as we do in an age when the art of haven-finding demands little more of us 
than the ability to push buttons and read displays it is, perhaps, difficult for us to look 
back to a time when the development of techniques for measuring geographic location 
was cause for excitement.  But when Cook embarked on the first of his famous voyages to 
the Pacific in 1768, European explorers and the interested public alike, were exuberant 
that it was at last possible to sail across thousands of kilometres of open ocean to never-
before-visited lands and islands, guided only by two simple numbers. 
 
The latitude of any place is its angular distance north or south of the Earth's equator.  Its 
measurement is relatively easy, for the further north you are, the proportionately lower 
will the Sun and stars in the sky to your south appear.  Longitude however, is far more 
difficult to determine accurately.  Longitude is the angular distance east or west of a given 
line (meridian), running from the north to south pole.  Nowadays the universally adopted 
prime meridian is the one through the observatory at Greenwich in England, but before 
this was agreed upon in 1884, navigators selected their own prime meridians.  
Eighteenth-century Spanish charts of the coast of British Columbia for example, have 
longitudes marked relative to the meridians of Cadiz, Tenerife, San Blas, and occasionally 
Paris. 
 
The measurement of longitude amounts essentially to measuring the difference between 
local time and Greenwich time.  The later that local noon occurs after noon at Greenwich, 
the further west you are.  Hence to measure longitude, one could set one's clock to be 
twelve at the moment the Sun is due south, and then phone a friend at Greenwich who 
had done the same, and compare times.  Alternatively, you could fly to England, set your 
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watch by the Sun, bring it back home, and check it at noon.  In the city of Vancouver, if 
we neglect small variations in the timing of noon due to the Earth's slightly elliptical orbit, 
your watch would be 8h 12m 24s fast, which corresponds to a longitude of 123°06'W. 
[Note: 1° (degree) = 60' (minutes of arc) = 4 minutes of time]. 
 
Captain Cook had neither telephones nor airlines, nor quartz digital watches that could 
keep good time for the many months it took to reach the Pacific coast of North America.  
He did have good time-keepers, chronometers as they are called, and these he used 
extensively for measuring the relative longitudes of places not too far apart, but 
eventually cumulative errors made it necessary to re-calibrate them.  For the time signals 
he needed to do this, he had to look to the sky. 
 
The method that the British Navy used to tell the time at Greenwich is known as the 
method of lunar distances.  Basically this involves measuring the position of the Moon in 
its monthly orbit around the Earth, and then using pre-calculated tables to determine the 
predicted time for the Moon to be at that position.  The Moon was most often located by 
measuring the angular distance between it and the Sun, but its distance from selected 
stars was also used. 
 
Other methods for finding Greenwich time, such as observing the timing of eclipses of the 
moons of Jupiter, or the timing of the occultation of stars by the Moon, were more 
accurate, and were used successfully on the west coast by the Spanish.  However, these 
methods could not be used at sea because of the difficulty of aiming a high-powered 
telescope from a swaying deck.  The instrument used for measuring angular distance, the 
sextant, overcomes this problem by using a system of mirrors that brings the images of the 
two bodies being observed together, irrespective of the unsteadiness of the hands that are 
holding it. 
 
The Moon completes its orbit around the Earth, on average once every 27.5 days relative 
to the (fixed) stars, and once every 29.5 days relative to the Sun.  These times are different 
because as the Earth moves around the Sun in its annual orbit, the direction of the Sun, 
relative to the background of stars, slowly changes.  The movement of the Moon is most 
familiar to us as the gradual progression from new moon, when Sun and Moon appear in 
the same direction and set together in the evening, to full moon, when they are in 
opposite directions and the Moon is high in the sky throughout the night.  The transition 
from full moon back to new moon is less conspicuous because, during this part of its 
orbit, the Moon is only visible to the casual observer in the early morning hours. 
 
Compared to the Sun's 24 hours, it takes the Moon, on average, 24 hours and 50 minutes 
to reappear in the same position in the sky each day.  Consequently, although the Moon 
rises in the east and sets in the west, just like the Sun, it does so more slowly, and it always 
appears further to the left of where it was 24 hours earlier.  It is this constantly changing 
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position, relative to the Sun and stars, that the 18th-century navigators sought to 
measure, and thereby determine Greenwich time, and hence their longitude. 
 
Captain Cook spent four weeks at Ships' Cove (now Resolution Cove) on Bligh Island in 
Nootka Sound (49°36.4'N, 126°31.7'W).  There, he repaired and re-provisioned his ships, 
met and traded with the native people, and did all the things that famous explorers do.  
During this time, he and his chief astronomer, Second Lieutenant James King, made 91 
sets of measurements of their longitude.  William Bayly, the astronomer aboard HMS 
Discovery, the ship accompanying HMS Resolution, made a further 31 sets of 
measurements.  Since each set usually involved the averaged value of six observations of 
the position of the Moon, the sum total of observations made could well have been in 
excess of 600. 
 
The translation of a measurement of the Moon's position to a determination of longitude 
was no simple matter.  This is because the Moon's apparent location is modified by both 
refraction and parallax. 
 
Although the distorting effects of refraction in the Earth's atmosphere are much less than 
those of say, water or glass, we nevertheless see the Sun, Moon, and stars as though 
through a giant lens; and the navigator must correct for this in the course of making his 
calculations. 
 
Parallax was an especially difficult complication to the method of lunar distances.  
Because the Moon is so close to us relative to the other heavenly bodies, the apparent 
direction of the Moon changes as we move about on the Earth's surface.  In order to be 
able to use a universally applicable set of tables describing the lunar orbit, the navigator 
was obliged to calculate from his observations, the direction in which the Moon would 
appear, if it were to be observed from a position corresponding to the centre of the Earth. 
 
The step-by-step instructions for computing corrections for refraction and parallax 
occupied 17 pages in one early navigators' manual, and resembled, in their complexity 
and obscurity, a modern income tax form.  If we remember that this work had to be done 
for each of the 122 sets of measurements made at Nootka, in cramped and poorly lit 
quarters, without the aid of calculators or computers, we can get some idea of the great 
investment Cook made in fixing his position accurately. 
 
Yet for all that, Cook's determination was not perfect.  His journal records the longitude of 
Ships' Cove as 126°42.5'W (233°17'30.5"E in the old notation), which is 10.8' (12.9 km) 
west of its true position.  Moreover, when Cook's midshipman, George Vancouver, 
returned to the coast 14 years later and re-determined Nootka's longitude over a hundred 
times (636 observations) using the same techniques, his result was 8.6' (10.3 km) too far 
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east.  This compares poorly with the Spanish determinations which were correct to one or 
two minutes of arc. 
 
The source of the difficulty of the method of lunar distances is the slowness of the Moon's 
motion.  It takes the Earth only four seconds to rotate through one minute of arc, but the 
Moon takes two minutes to move the same amount relative to the stars and Sun.  This is a 
ratio of 30:1; hence, in order to achieve a longitude accuracy of one minute of arc (one 
sixtieth of a degree), the Moon's position has to be pin-pointed with an accuracy 30 times 
better than this, i.e about two seconds of arc.  Even modern sextants are about five times 
less accurate than this, and the uncertainties in the refraction corrections preclude any 
further improvement. 
 
By taking hundreds of observations and averaging the results, the 18th-century 
navigators were attempting to reduce the effect of the random errors of their instruments. 
 In principle, this strategy was a good one.  The random error of the average of 625 
readings will, on average, be less than the error of the individual readings by a factor of 
√625 = 25.  So, given a basic sextant accuracy of one minute of arc, it should have been 
possible by averaging over 600 results to have improved the accuracy sufficiently to make 
a longitude reckoning of the same order of accuracy. 
 
So where's the snag?  Surveyors and hydrographers of course hardly need to be told.  The 
snag is that the errors must be truly random for this technique to work.  If every result 
contains exactly the same error, then so will the average, and this will be so, no matter 
how many results are averaged.  Captain Cook's  determinations show every sign of 
containing such a non-random (systematic) component, which averaging could, and did 
not eliminate.  The author's task in analysing Cook's results was to identify precisely this 
systematic error. 
 
The source material for this work is contained in Bayly's book, The Original Astronomical 
Observations..., published in 1782 by the Commissioners of Longitude.  It contains 350 
pages of details of astronomical, horological, meterological, oceanographic, geomagnetic, 
and geodetic observations made during the course of the third voyage.  Each of the 122 
sets of lunar distance observations made at Nootka is summarized in a 14 column entry;  
these are the date, time according to the deck watch, apparent time (i.e. true local solar 
time), the lunar distance from Sun or star, the altitude of the Sun or star, the altitude of 
the Moon, the sextant used, the sextant index error, the barometric pressure, the 
temperature, the identity of the observer (Cook, King or Bayly), the latitude of Nootka 
(which was accurate to 0.3' ), the deduced longitude, and the identity of the star, if not the 
Sun, from which the lunar distance was measured.  Although the original editors of 
Cook's journal make no mention of Bayly's observations, I have included them in my 
analysis, as they are, so far as I can tell, equal in quality to those of Cook and King. 
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Two developments in late 20th-century technology have made a re-examination of Cook's 
longitude determinations possible.  The first is the ready availability of personal 
computers.  My own machine is not by any means state-of-the-art, yet it is easily possible 
for me to repeat all 122 calculations of longitude, including looking up refraction tables, 
correcting for parallax, and performing inverse interpolation on the Nautical Almanac 
positions of the Moon to determine Greenwich time, in less than two minutes.  Originally 
this work must have taken at the very minimum ten days to complete, working diligently 
throughout the day, hour-after-hour, day-after-day. 
 
The second development, is a means of accurately calculating the positions of objects in 
the solar system which is based, not on theoretical analysis of telescopic observations, but 
on direct measurements of their mass and movements using space probes, radar, and in 
the case of the Moon, laser signals bounced from quartz reflectors left behind by the 
Apollo astronauts.  Possibly a good indication of the importance of the accuracy of the 
ephemerides used for this analysis is that, in calculating the positions of objects in the sky 
over Nootka two centuries ago, I have had to take into account the cumulative effect of 
fluctuations in the Earth's axial rotation due to tidal friction, even though these daily 
fluctuations are typically measured in fractions of a millisecond. 
 
The way I tackled the analysis was to re-do Cook's calculations four ways.  The first way, 
or analysis mode as I call it, was to take Bayly's figures as literally as possible, and re-
compute the longitude using 18th-century tables and techniques.  The second analysis 
mode, mode 2, was to take those mode 1 results where there was a discrepancy between 
Bayly's and the calculated longitudes and look at the possibility that there was a simple 
arithmetic or typographical error that could plausibly explain the difference.  The 
objective of the mode 2 analysis was to reproduce Cook's results exactly.   For mode 3, I 
corrected any errors that Cook had made and re-computed the longitudes, still however 
using 18th-century tables and techniques.  And for mode 4, I re-worked all the 
calculations using modern tables and modern techniques. 
 
For mode 1, only obvious errors were corrected—for example calculation shows that 
observations dated April 19 could only have been made the previous day.  In seven cases 
for the Sun and six for the Moon the nature of the altitude was also incontrovertibly 
wrong.  In fact the first surprise, and a foretaste of what was to come, came with the first 
look at the first result, which is an observation credited to King made on April 2, 1778 
(Bayly 1782, 46).  Actually this observation was made shortly before 4 pm in the 
afternoon on April 1 as Cook reckoned local time to be 16 hours ahead of Greenwich, not 
as we do today eight hours behind.  The Sun's altitude is recorded as 62°35', a value 
which is only reached at noon on a mid-summer's day at Nootka.  In fact, what had been 
recorded was the angle between the Sun's lower limb and the point immediately above 
the observer's head (the zenith); the actual altitude of the Sun corrected for refraction was 
only 27°39'. 
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Some of the results of these mode 1 computations agreed with Cook's results, and some 
did not.  On the whole the comparison was not good.  In only 63 of the 122 cases was the 
computed distance, cleared for parallax and refraction, within 10" of arc of the value that 
was used to compute the longitude given in Bayly's book (mean difference 8", stnd.dev. 
15").  [Note: 1" (second of arc) = 1/3600 of 1° (degree)]. 
 
For the mode 2 analysis I looked for simple explanations for the mode 1 discrepancies.  
This was fairly successful.  A typical example of what was found was the first observation 
using the star Regulus made by Cook on April 3.  The given zenith distance of the Moon's 
upper limb (39°07') gives an altitude for the Moon which is too low by almost exactly its 
own diameter.  Taking the table entry to be the zenith distance of the lower limb not only 
corrects the altitude by modern reckoning, but reduces the distance discrepancy from 13" 
to zero i.e. there is a “typo” in the table; ZD UL should be ZD LL.  There are at least 18, 
and perhaps as many as 28 examples of this kind of error in Bayly's tables. 
 
Four amusing calculation errors were discovered among the 31 observations credited to 
Bayly.  In each case, whoever made the calculations failed to clear the lunar distances for 
refraction.  This is a fairly major oversight, yet interestingly the uncleared distances give 
longitudes closer to Cook's mean longitude than they would have, had they been 
processed correctly. 
 
The most difficult kind of error to deal with in the mode 2 analysis was the sextant index 
error.  I spent a lot of time looking into these and am left with the distinct impression that 
the figures given by Bayly are not very reliable.  The index error is the sextant reading 
when the two images of the same body are brought together.  The reading ought to be 
zero, but in practice there is often a small variable off-set. 
 
The difficulty with the hypothesis that some of the index errors are incorrectly tabulated 
is that by postulating a different index error one can always remove the distance 
discrepancy, and yet have no substantiating evidence that the proposed alternative error 
value is correct.  However, in some cases, it was possible to accept that the errors had 
been carelessly recorded.  For example, the two observations made by King on April 21 
and 22 using the Dolland instrument appear to have been corrected by -15", even though 
Bayly's figures state he used -15" on the 21st and -30" on the 22nd.  King used -13" for 
his observation with the third Ramsden instrument (R3) dated April 4, but Cook's result 
with R3 on the same day has been processed using +13".  There are many other similar 
examples. 
 
The end result of the mode 2 analysis was 103 cases out of 122 where the computed 
lunar distance agreed with Cook's to better than 10" of arc (mean difference 4", stnd.dev. 
12"). 
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Certainly more interesting than typographical errors which could have crept into Bayly's 
figures at any time after the original calculations were made, are those errors that were 
incorporated into the longitude calculations.  There seem to be just as many of these 
errors as there were typographical errors.  A typical example would be Bayly's second 
observation dated April 22.  The given altitude for the Moon is by my reckoning exactly 
right, yet the 77°29' for the zenith distance of the Sun's upper limb puts the Sun 29', i.e. 
about one diameter, too low.  Almost certainly what was measured was the lower limb, 
but the calculations show that the upper limb was nevertheless used in the longitude 
calculation. 
 
To see the consequences of this type of error I re-calculated the mode 2 results, correcting 
any mistakes that had been found.  This constituted the mode 3 analysis.  And as indicated 
above, I then re-calculated the mode 3 results using my own version of the Nautical 
Almanac.  This was based on positions of the Sun and Moon in 1778 generated by one of 
the Numerically Integrated Ephemerides developed at the California Institute of 
Technology's Jet Propulsion Laboratory at Pasadena. 
 
The results of this work are shown in the Figures. 
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Figures 1 to 3 show histograms of the error in the altitude measurements used for the 
longitude calculations (mode 2).  Altitudes of the Sun, Moon or star (Regulus) were only 
required for the parallax and refraction corrections of the lunar distance and very precise 
measurements were not necessary.  Nevertheless, the 18th-century navigators usually 
made good observations as evidenced by their latitude determinations which were usually 
less than a minute of arc in error.  Similarly precise measurements would have been used 
by Cook to establish the relationship between apparent (local solar) time and the time by 
his chronometers. 
 
The standard deviation of the altitude errors in Cook's observations is about five minutes 
of arc, which is a bit high.  One possible contributing factor, as indicated in the Figures, is 
that some unrecorded allowance was made for dip i.e. the height of the observer's eye 
above sea-level.  If the altitudes in Bayly's tables need to be corrected for dip, a correction 
I did not make, then there would be a positive error in the range 3' to 6'.  It seems unlikely 
however that such a routine correction would not be made: and it might not even have 
been necessary if due to the very restricted view of the open ocean at Ships' Cove, an 
artificial horizon [a basin of quicksilver (mercury)] was used. 
 
There is a second possible explanation for the altitude errors; and that is that they are a 
result of timing errors.  Ideally, the altitude and lunar distance measurements would have 
been made simultaneously, but it was recognized in the navigational instruction manuals 
of the time that a shortage of instruments and observers could easily preclude this.  
Instead, it was allowed that altitude measurements should be made as soon as possible, 
but less than a minute after the lunar distance had been fixed.  The result of this 
procedure would have been that objects rising in the eastern sky would be recorded with 
altitudes too high, and objects setting in the western sky would be recorded with altitudes 
too low.  The observations in Bayly's tables, particularly those of the Moon but also of the 
Sun, do in fact show such a bias.  Regardless of whether objects were rising or setting, 
measurements of altitude appear to have been made too late.  Moreover, the mean 
magnitude of the equivalent timing error of the Moon observations is 20 seconds, which 
is the delay that might be expected if the altitude was observed with the same instrument 
as was used to measure the lunar distance.  If this explanation is correct, the positive bias 
in the altitude errors would then be attributable, not to dip, but to the preponderance of 
measurements (60%) made in the eastern hemisphere.  Similarly the range of the errors 
would be attributable, not to indifferent measurement, but to varying time delays and 
rates of change of altitude of the bodies being observed.    
 
All of the calculations that navigators make involving the position of the Sun and Moon 
are based on the position of the centre of the disc, but in practice observations of position 
are made relative to one or other of the edges (limbs) of the disc.  To find the centre, the 
radius (semi-diameter) is then added or subtracted as required.  Figure 4, which shows a 
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composite histogram of the altitude errors, provides evidence that this routine operation 
was not always made with care.  If for example, for an altitude measurement the upper 
limb is observed, but the radius is added instead of subtracted, the altitude will be out by 
two radii.  If the correction is neglected, it will be out by one radius.  And if, as Figure 4 
suggests, the figures are re-worked without good records being kept, it is possible to make 
more than one such mistake and be out by three radii or more. 
 
Two of Bayly's observations of the altitude of the star Regulus, which of course has no 
limbs, are out by the radius of the Sun, and in one case the incorrect altitude is not just a 
“typo”, it was actually used!  In one observation by Cook and one by King, the altitude of 
the star Regulus is out by the diameter of the Sun, though these incorrect values were not 
used. 

 
 
 
So what was the effect of these and other errors on Cook's longitude determinations?  The 
answer is not much.  Figure 5 shows a histogram of longitude determinations as listed by 
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Bayly compared to the true longitude of Ships' Cove.  The mean error is 8.3'W, slightly 
less than Cook's journal figure because I have included Bayly's observations.  For 
observations using the Sun the error is 12.1'W, and using Regulus 5.7'E, a difference I 
shall come back to later.  After correction (mode 3) the error becomes 5.3'W.  For the Sun 
observations alone it becomes 10.3'W, and for the Regulus observations 13.3'E. 
 
The non-Nautical Almanac errors evidently did contribute somewhat to Cook's westerly 
error, but as Figure 6 shows, on the whole these types of error tended to average out. 
 
Figures 7 and 8 show the results after being re-worked using my modern version of the 
Nautical Almanac.  Figure 7 shows the Sun observations; Figure 8 the Regulus 
observations.  Figure 7 is a pleasing histogram; not only has the mean longitude error 
been virtually eliminated (0.8'W or 1.0 km), but the curve has a symmetry which 
suggests that individual observations were subject to a truly random error, as indeed they 
would be if the only remaining error were to be in the sextant readings of the lunar 
distance.  Unfortunately Figure 8 shows that this is not true for the Regulus observations:  
the error here has actually increased to a surprising 25.0'E. 
 
In order to check that the good results shown in Figure 7 were not a chance occurrence, I 
applied the same analysis technique to Vancouver and Whidbey's observations at Nootka 
in 1792.  The result was equally good:  their longitude can be corrected to within 0.5' 
(600 m) of the correct value. 
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Figures 9 to 12 show the nature of the errors made in Cook's 1778 Nautical Almanac.   
 
Figure 9 shows the error in the lunar distance from the Sun for the month of April.  In the 
first part of the month, the Nautical Almanac underestimated (negative error) the lunar 
distance.  Since the Moon was moving away from the Sun, this led to estimates of 
Greenwich time which were too fast, and consequently the difference between local and 
Greenwich time was taken to be too large, and the longitude was determined to be west of 
its true value.  This was the main cause of Cook's error.  In fact, his error would have been 
considerably worse but for the fact that the Nautical Almanac was virtually correct for the 
observations made around the twenty-first. 
 
Lest any reader looking at Figure 9 be tempted to be critical of the 1778 Nautical 
Almanac, and thereby of Johann-Tobias Mayer's equations for the motion of the Moon, it 
should be noted that for the most part the error in lunar distance is decidedly less than 1 
minute of arc.  This was the accepted goal of his time,  and even today, non-professional 
astronomers would be hard pressed to do better. 
 
Figures 10, 11, and 12 trace the source of the errors in the tabulations of lunar distance 
from the Sun.  Lunar distance was computed from determinations of the ecliptic latitude 
and longitude of the Sun and Moon.  Figure 10 shows the error in solar longitude, Figure 
11 the error in lunar longitude, and Figure 12 the error in lunar latitude.  Clearly the 
errors shown in Figure 9 are mostly attributable to the error in lunar longitude, Figure 
11.  [Note:  Ecliptic (or celestial) latitude and longitude are measured for a sphere whose 
equatorial plane is the Earth's orbit around the Sun, i.e. by definition the solar latitude is 
zero.  The zero longitude point, the celestial equivalent of Greenwich, is defined by the 
Spring Equinox.  Ecliptic and terrestrial latitudes and longitudes would be equivalent if 
the Earth were not tilted by 23.5° and it did not rotate every 24 hours]. 
 
Some idea of the complexity of the Earth's and Moon's orbit in April 1778 can be seen in 
Figures 13 to 16. 
 
Figure 13 shows the distance (actual, not angular) of the Earth from the Sun.  In April, the 
Earth, which has a slightly elliptical orbit, is moving away from the Sun.  However, this 
movement is not as smooth as Figure 13 would suggest. 
 
Figure 14 clearly shows the variation in the Earth's velocity away from the Sun as it orbits 
the centre of gravity of the Earth and the Moon.  This variation, which was neglected by 
the compilers of the Almanac in order to simplify the calculations is probably the origin of 
the increase in the solar longitude error visible in Figure 10 towards the end of the 
month. 
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Figures 15 and 16 similarly show the complexity of the Moon's orbit.  These odd shaped 
curves take equations containing a hundred or more terms to accurately describe, and 
result from the complex interaction of the gravitational fields of the Earth, Sun, and 
planets. 
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Figures 17 shows the Moon's ecliptic longitude, and the difference between the true and 
mean motion for the month.  The variation in longitude can easily be ascribed to the 
eccentricity of the Moon's orbit as evidenced by Figures 15 and 16.  Not so clear is the 
link between the longitude error shown in Figure 11 and the actual longitude shown in 
Figure 17.  Although I have not examined Mayer's equations for the Moon's motion in 
longitude, I suspect from the fact that the error appears to go through three complete 
cycles in the month, and that the positive and negative peaks of the error are roughly 
equal, that it is an inevitable consequence of the limited number of terms he was forced to 
use in order to make his calculations tractable. 
 
Figure 18 shows the latitude (and declination) of the Moon.  Comparison with Figure 12 
shows the error to be in almost perfect phase quadrature with the latitude, suggesting a 
small timing error in the equations.  Latitude errors are of small import as they mostly 
represent displacement perpendicular to the line joining the Sun and Moon.  
Displacements in this direction change the angle of the line relative to the stars, but not its 
length. 
 
Although this analysis has cleared up many problems associated with Cook's observations, 
there remains one mystery.  As shown in Figure 8, those determinations that rely on 
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measurements of the distance between the Moon and the star Regulus give a corrected 
longitude which is 25.0' too far east.  Yet as shown in Figure 19, the Nautical Almanac 
errors in the position of the Moon that generated a westerly bias for the solar 
measurements should also have done the same for observations made with the star. 
 
The first thought that came to mind in looking at this is that the compilers of the Almanac 
had got the position of Regulus wrong.  However calculations showed this not to be the 
case.  Figure 20 shows the computed latitude and longitude of Regulus throughout 1778. 
 [Note:  Almost none of the motion in longitude of a star is due to any actual change in the 
position in the star; it is due mainly to changes in the position of the zero longitude point.  
This point (the equinox) is defined by the intersection of the Earth's equatorial plane with 
the ecliptic, and because the Moon causes the Earth's axis to wobble, so also does this 
reference point.  It's as if Greenwich moved about a bit.  The phenomenon is known to 
astronomers as nutation]. 
 
It was easy to show that modern values for the latitude and longitude of Regulus in April 
1778 were within a few seconds of arc of that used by the 18th-century mathematicians 
for their lunar distance calculations.  Moreover, the position recorded in the catalogue of 
stars in the Nautical Almanac of 1773 is also perfectly correct. 
 
The only other explanation I have for the discrepancy is that for some reason, the distance 
measurements for Regulus have, on average, been over-estimated by about 42".  
Assuming an additional sextant index error of this amount corrects the longitude 
determinations made with the star.  It also has relatively little effect on the mean value of 
those made with the Sun, although it does significantly increase their standard deviation.  
Because all of the Regulus observations, without exception, were made when the Moon 
was approaching the star, an over-estimate of distance pushes the apparent longitude 
east.  However, observations using the Sun were made both before and after full moon, so 
an over-estimate of distance would produce a mix of errors which tend to cancel out. 
 
But why the over-estimate?  Was one of their sextants particularly bad?  Because 
relatively few Regulus observations were made with any one sextant it is difficult to make 
any absolute judgements on this, but the results of analysis point very strongly to the 
notion that the error was not attributable to one particular instrument.  For some reason, 
all lunar-star angular distance measurements made at Nootka in 1778 appear to have 
been over-estimated compared to the lunar-Sun measurements, no matter who made the 
observation, or with what instrument.  And there, for the moment, unless any reader can 
offer an explanation, the matter rests. 
   
Each of the three observers whose names appear in Bayly's book took around 30 
observations of the lunar distance from the Sun at Nootka.  The mean error of their 
longitude determinations after correction for Nautical Almanac errors is 10'E +21' for 
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Bayly, 7'W +18' for Cook, and 3'W +12' for King.  This may be slim evidence that King 
was the best observer of the three:  but as a reward, I will at least let him have the last 
word.  A quotation that shows that he would hardly have been surprised by the results of 
this analysis. 
 
...(it) seems necessary to be known that young folks may not lay aside this certainly most 
excellent method, by perceiving the results of their observations are not so regular as 
might be expected ... considerable differences will often happen, but it will almost allways 
be found that the mean of many results with different sextants will be very near the 
truth.... 
Notes in King's log, Nootka Sound 
 
 * * * * * * * * * * 
 
The author is an engineer living in White Rock.  His interests include sea-kayaking, 
18th-century navigational techniques, and archaeoastronomy in the Alexander Thom 
tradition. 
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